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Rarefied gas flow through a thin orifice is studied on the basis of the direct simulation
Monte Carlo method. The mass flow rate and the flow field are calculated over the
whole range of the Knudsen number for various values of the pressure ratio. It
is found that at all values of the pressure ratio a significant variation of the flow
rate occurs in the transition regime between the free-molecular and hydrodynamic
regimes. In the hydrodynamic regime the flow rate tends to a constant value. In the
case of finite pressure ratio the flow field qualitatively differs from that for outflow
into vacuum, namely vortices appear in the downflow container on approaching the
hydrodynamic regime. Then, in the hydrodynamic regime the gas flow forms a strong
jet. A comparison of the numerical results with experimental data available in the
open literature has been performed.

1. Introduction
Rarefied gas flow through a thin orifice is of great practical interest. This kind

of flow is realized in vacuum equipment, see e.g. Dushman (1962); Roth (1976),
microfluidics, see e.g. Aktas, Aluru & Ravaioli (2001), electronic microscopy, see e.g.
Danilatos (2001), Danilatos, Phillips & Nailon (2001), spacecraft design, see e.g.
Jamison, Ketsdever & Muntz (2002), metrology of gas flow, see e.g. Szwemin,
Szymański & Jousten (1999), Jitschin, Weber & Hartmann (1995), Jitschin,
Ronzheimer & Khodabakhshi (1999), and in many other applications. As was noted
in the previous papers Sharipov & Seleznev (1998) and Sharipov (2002b), in spite of
the great practical importance, till now no reliable results on orifice flow have been
available in the open literature for wide ranges of the parameters determining the
gas flow, namely gas rarefaction and the pressure drop through the orifice.

Below, we will distinguish the three regimes with respect to gas rarefaction. If the
gas rarefaction is high and the molecular mean free path in the upflow container is
significantly larger than the orifice radius, then the regime is called free molecular or
collisionless. If the rarefaction is low, i.e. the mean free path is significantly smaller
than the orifice radius, then the regime is called hydrodynamic. If the rarefaction is
intermediate between the free-molecular and hydrodynamic regimes, then the flow is
called transitional. Two limits can be considered with respect to the pressure drop. If
the pressure in the downflow container is negligible compared with that in the upflow
one it can be said that the gas outflows into vacuum. The opposite limit corresponds
to the case when the pressure drop is significantly smaller than the average pressure.

A number of works, see e.g. Liepmann (1961), Narasimha (1961), Willis (1965),
Rotenberg & Weitzner (1969), have proposed analytical expressions for the mass flow
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rate near the free-molecular regime in the case of outflow into vacuum, which are
valid in a very small range of gas rarefaction. Some numerical data for the outflow
into vacuum in the transition regime are reported by Shakhov (1974) and Sharipov
(2002b). In the hydrodynamic regime the problem was solved by Alder (1979) on the
basis of the Euler equation, which is valid for high values of the Reynolds number.
In the case of low Reynolds number Roscoe (1949) and Hasimoto (1958) solved the
Stokes equation analytically. Thus, the theoretical results on orifice flow are restricted
to small ranges of gas rarefaction and pressure drop.

Systematical experimental results on orifice flow in the hydrodynamic regime were
reported by Perry (1949) for a large pressure drop and by Linden & Othmer (1949) for
a small pressure drop. Some experimental results in the case of outflow into vacuum
are presented by Liepmann (1961). However, in the transition regime the scatter of
his experimental points is rather large which makes the data non-reliable. Sreekanth
(1965) presented experimental data for the transition regime at various values of the
pressure drop. Borisov et al. (1973) and Porodnov et al. (1974) provide experimental
results for a small pressure drop for a wide range of gas rarefaction. Barashkin,
Porodnov & Chemagin (1977a), Barashkin, Porodnov & Suetin (1977b) and Jitschin
et al. (1999) present experimental data on the outflow into vacuum through an orifice
covering practically the whole range of gas rarefaction. Fujimoto & Usami (1984)
reported experimental results on the mass flow rate through short tubes. The length-
to-radius ratio of the shortest tube was L/a =0.05, which can be considered an orifice.
They measured the flow rate for a wide range of rarefaction for several values of the
pressure drop. Thus, the experimental material on orifice flow is not as rich as one
expects for such a type of gas flow.

The aim of the present paper is to calculate the mass flow rate and the flow field
for a wide range of gas rarefaction for various values of the pressure ratio.

2. Statement of the problem and definitions
Consider an orifice in an infinitesimally thin partition, which separates two semi-

infinite containers. One of them contains a gas at a pressure P0, while the other is
maintained at a smaller pressure P1, i.e. P1 <P0. The temperatures of the gas in both
containers are equal to T0. The quantity of practical interest is the mass flow rate Ṁ

through the orifice and the flow field in both containers.
The solution of the problem is determined by two main parameters: the pressure

ratio P1/P0 and the gas rarefaction δ defined as

δ =
aP0

µ0 v0

, v0 =

(
2kT0

m

)1/2

, (2.1)

where a is the orifice radius, µ0 is the stress viscosity at temperature T0, v0 is the most
probable molecular velocity at the same temperature, m is the molecular mass of the
gas, and k is the Boltzmann constant. Considering the viscosity µ0 to be proportional
to the molecular mean free path � one can see that the rarefaction parameter δ is
inversely proportional to the Knudsen number defined as Kn= �/a. So, the limit
δ =0 corresponds to the free-molecular (or collisionless) regime of the flow, while the
opposite limit (δ → ∞) describes the hydrodynamic regime.

The rarefaction parameter δ can be related to the main dimensionless parameters
of the gas dynamics, namely the Reynolds (Re) and Mach (Ma) numbers as

δ =
1√
2γ

Re

Ma
, (2.2)
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Re =
a u ρ0

µ0

, Ma =
u

c0

, c0 =

(
γ

kT0

m

)1/2

, (2.3)

where γ is the specific heat ratio, u is a characteristics velocity of the gas flow,
ρ0 = mP0/kT0 is the mass density of the gas, and c0 is the adiabatic sound velocity at
temperature T0.

In the free-molecular regime δ = 0 and under the condition P1/P0 = 0 the mass flow
rate can be calculated analytically, see e.g. Bird (1994),

Ṁ0 =

√
π a2

v0

P0. (2.4)

This expression can be used to introduce the reduced mass flow rate as

W =
Ṁ

Ṁ0

, (2.5)

which will be used henceforth. Assuming that in the free-molecular regime the opposite
flows through the orifice do not interact with each other the total flow rate is easily
obtained for an arbitrary pressure ratio P1/P0:

W = 1 − P1

P0

at δ = 0. (2.6)

If the partition thickness L is not infinitesimal but it is much smaller than the orifice
radius, i.e. L � a, then according to Berman (1965) the flow rate given by (2.6) must
be corrected to

W =

(
1 − P1

P0

) (
1 − L

2a

)
. (2.7)

3. Hydrodynamic regime
In the hydrodynamic limit δ � 1 the problem can be solved on the basis of the

continuum mechanics equations. Under the condition Re � 1 the gas flow can be
considered as isoentropic so that the Euler equation can be applied. The isoentropic
flow through an orifice can be considered as a limit case of nozzle flow. The mass
flow rate through a nozzle Ṁn is easily obtained from the Euler equation and can be
written as

Ṁn = 2Ṁ0

(
P1

P0

)1/γ
[

πγ

γ − 1

(
1 −

(
P1

P0

)(γ+1)/2
)]1/2

at
P1

P0

>

(
P1

P0

)
∗
, (3.1)

and

Ṁn = Ṁ0

√
2πγ

(
2

γ + 1

) γ+1
2(γ −1)

at
P1

P0

�

(
P1

P0

)
∗
, (3.2)

where (P1/P0)∗ is the so-called critical pressure ratio given as(
P1

P0

)
∗
=

(
2

γ + 1

)γ /(γ −1)

. (3.3)

It is known that under the condition (P1/P0) > (P1/P0)∗ a decrease of P1 leads to an
increase of the flow rate if P0 is fixed. However, under the condition (P1/P0) < (P1/P0)∗
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Source L/a Gas γ C W

Liepmann (1961) 0.0507 Ar 5/3 0.812 1.48
Barashkin et al. (1977b) 0.0420 Ar 5/3 0.826 1.50
Jitschin et al. (1999) 0.0162 He, Ar, Kr 5/3 0.853 1.55
Perry (1949) 0.151 air 1.4 0.843 1.45
Fujimoto & Usami (1984) 0.050 air 1.4 0.844 1.45
Liepmann (1961) 0.0478 N2 1.4 0.824 1.41
Barashkin et al. (1977b) 0.0420 H2 1.4 0.853 1.46
Jitschin et al. (1999) 0.0162 H2, N2, air 1.4 0.869 1.49
Alder (1979) 0 diatomic 1.4 0.830 1.42
Liepmann (1961) 0.0478 CO2 1.3 0.830 1.39
Barashkin et al. (1977b) 0.0420 CO2 1.3 0.856 1.43
Jitschin et al. (1999) 0.0162 CO2 1.3 0.891 1.49
Jitschin et al. (1999) 0.0162 C3H8 1.13 0.876 1.41

Table 1. Discharge coefficient C and flow rate W in the hydrodynamic regime (δ → ∞) for
outflow into vacuum (P1/P0 = 0) for various specific heat ratios γ .

a further decrease of P1 does not change the flow rate so that the flow rate Mn given
by (3.2) does not depend on the pressure ratio. The last situation is called a choked
flow.

The expressions (3.1) and (3.2) were obtained assuming a gradual decrease of the
nozzle cross-section that is not valid for the orifice flow. As a result the experimental
works by Perry (1949), Liepmann (1961), Barashkin et al. (1977a ,b), and Jitschin et al.
(1999) reported a lower value of the flow rate than that given by (3.2). To characterize
this discrepancy a discharge coefficient C was introduced as

C =
Ṁ

Ṁn

, (3.4)

which is used in many papers on orifice flow. Thus, in the hydrodynamic regime
(δ → ∞) for high Reynolds numbers the flow rate W through an orifice can be related
to the discharge coefficient C as

W = C
Ṁn

Ṁ0

. (3.5)

The experimental data by Perry (1949), Liepmann (1961), Barashkin et al. (1977a ,b),
and Jitschin et al. (1999) and the theoretical results by Alder (1979) in the case
P1/P0 = 0 are summarized in table 1. In the second column the ratio of the partition
thickness L to the orifice radius a used in the experiments is given. The experimental
data by Perry (1949); Fujimoto & Usami (1984) and the theoretical results by Alder
(1979) on the discharge coefficient C for different values of the pressure ratio are
presented in table 2. From these data we conclude that the dependence of the discharge
coefficient C on the specific heat ratio γ is weaker than that of the flow rate. At
the same time, the coefficient C significantly depends on the pressure ratio. However,
the experimental results of different authors are not in good agreement with each
other even for the same species of gas. For monatomic and diatomic gases the
disagreement reaches 5% and for CO2 the disagreement is 7%. This disagreement
can be explained by the influence of the partition thickness. In the free-molecular
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C

Source γ P1/P0 = 0 0.1 0.5 0.9

Perry (1949) 1.4 0.843 0.840 0.756 0.617
Fujimoto & Usami (1984) 1.4 0.844 0.836 0.757 –
Alder (1979) 1.4 0.830 0.829 0.740 0.610
Present work 5/3 0.835 0.830 0.742 0.632

Table 2. Discharge coefficient C in the hydrodynamic regime (δ → ∞) for various pressure
ratios P1/P0.

regime this influence is estimated by (2.7), while in the hydrodynamic limit it can be
evaluated by solving numerically the Euler equation.

In the limit of small pressure drop (P0 − P1 � P0) Roscoe (1949) and Hasimoto
(1958) solved analytically the two-dimensional Stokes equation and obtained the
following solution:

W =
2δ

3
√

π

(
1 − P1

P0

)
. (3.6)

However, as was shown by Sharipov (1996) this solution is valid for low values of the
Reynolds number and as a consequence the pressure drop must satisfy a very strong
condition, namely

P0 − P1

P0

� 1

δ2
, (3.7)

which not normally fulfilled in practice. So, the solution (3.6) is restricted to very
small ranges of the pressure difference.

It should be noted that in many books, see e.g. Roth (1976), the solution (3.1) and
(3.2) is called viscous flow in spite of the fact that it does not depend on the gas
viscosity. It would be correct if the solution (3.6) were called viscous flow, because it
is determined by the viscosity, while the solution (3.1) and (3.2) should be called an
isoentropic flow.

4. Method of solution
Like the previous paper Sharipov (2002b), the problem in question was solved by

the direct simulation Monte Carlo (DSMC) method proposed and described by Bird
(1994), which consists of the numerical simulation of the movements and collisions
of a large number of model particles. The gas flow region is divided into a network
of cells having dimension such that the change in flow properties across each cell is
small. The time is advanced in discrete steps of magnitude �t , such that �t is small
compared with the mean time tm between two successive collisions given by

tm = µ0/P0. (4.1)

Initially, the model particles are distributed uniformly in each container with
Maxwellian distribution functions corresponding to the equilibrium states far from
the orifice. The positions and velocities of the particles are saved in a computer
memory. Then, the particle motion and their collisions are uncoupled over the small
time interval �t by repetition of the following two stages.
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During the first stage the particles are moved through a distance determined by
their velocity and by the time increment �t . If the trajectory crosses a solid surface
a simulation of the gas–surface interaction is performed according to a given law.
The number of particles passing through the orifice from the upflow container to
the downflow one N+ and the number of particles passing through the orifice in
the opposite direction N− are counted. Then, the flow rate is calculated from the
number of particles passing through the orifice in both directions, i.e. via the quantity
(N+ − N−). New particles are generated at boundaries of the computational region
with the corresponding Maxwellian distribution function. The particles leaving the
computational region are removed from the computer memory.

In the second stage the number of pairs to be selected for intermolecular collisions
is calculated as

Ncoll =
NpN̄pFN (σTvr )max�t

2VC

, (4.2)

where Np is the number molecules in a cell during the last time interval �t , N̄p

is the average value of Np during all previous intervals �t , FN is the number of
real gaseous particles represented by one model particle, vr is the relative velocity
of two particles, σT is the total collision cross-section of particles, and VC is the cell
volume. The parameter (σTvr )max represents the maximum value of the product σT

and vr , which is stored for each cell. Every selected pair is accepted as a collision if
σTvr/(σTvr )max > R, where R is a random number varying from 0 to 1. This condition
provides more frequent collisions between faster particles.

The constant cross-section σT corresponds to the hard-sphere (HS) model of
molecules. In this case the exact expression for the viscosity obtained by Pekeris &
Alterman (1957) is

µ = 1.016034
5

16

√
πmkT

σT

, (4.3)

i.e. the viscosity is proportional to
√

T . Assuming the hard-sphere model it is
not necessary to specify a gas, but it is possible to carry out the calculations in
dimensionless quantities and to provide the reduced flow rate W as function of the
rarefaction parameter δ.

However, in reality the dependence of the viscosity on the temperature is slightly
different from (4.3). In general, we may write

µ(T ) ∝ T ω, (4.4)

where ω > 0.5. To take into account dependence µ(T ) the variable hard-sphere (VHS)
model is used, see Bird (1994, § 4.3). The idea is to introduce a variable cross-section
as

σT(vr ) =
σ0T

�(5/2 − ω)

(
4kT0

mv2
r

)2ω−1

, (4.5)

where σ0T is a reference cross-section related to a reference temperature T0 via the
viscosity by (4.3), and �(x) is the gamma function. So, the cross-section σT depends
on the relative velocity vr of colliding particles that provides the correct dependence
of the viscosity on the temperature, i.e. (4.4). The viscosity index ω depends on the
species of gas and is given Bird (1994, table A 1). For instance, under the standard
conditions (101 325 Pa and 0 ◦C) ω = 0.66, 0.81 and 0.85 for helium, argon and xenon,
respectively. Thus, if one uses the VHS model one has to specify the gas to be
considered. In this case the results lose a certain universality.
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Figure 1. Coordinates and computational grid.

Some modifications were made to the program used in the previous papers Sharipov
(2001), Sharipov (2002b) to improve the computational accuracy. First, a numerical
grid of three levels with respect to the cell size was used in the present work as
is shown in figure 1. Near the orifice edge where the variation of all quantities is
sharp the cell size was smallest. The second improvement is related to the radial
weighting factor. As Bird (1994) notes the most severe problem related to the DSMC
method applied to axially symmetric flows is the small number of model particles in
the cells located near the axis. In some situations an outermost cell has 100 times
more particles than a central one. To reduce this difference the weighting factors
were introduced. The computational region was divided in eight subregions having
the form of coaxial cylinders. When particles pass from one subregion to another
moving from the axis to the periphery, then half of the particles double their weight,
while the other half is eliminated. When a particle moving from the periphery to the
axis crosses the boundary between the subregions it is split into two particles each of
half the weight. Such a procedure allows us to maintain a more uniform distribution
of the model particles over the whole region of the gas flow. As a consequence, the
statistical scattering of the flow rate is reduced significantly while maintaining the
same number of model particles.

5. Gas–surface interaction
On the solid surface restricting the gas flow the distribution function satisfies

a boundary condition, which in general form is expressed via a scattering kernel
R(v′ → v), see Cercignani (1988),

|vn| f (v) =

∫
v′

n<0

|v′
n| R(v′ → v)f (v′) dv′, (5.1)

where v′ and v are the molecular velocities of the incident and reflected particles,
respectively, and vn is the normal component of the velocity v directed into the
gas. As was shown in Sharipov (2002a , 2003a, b) the widely used diffuse–specular
model of the gas–surface interaction contradicts some experimental data, while
the model proposed by Cercignani & Lampis (1971) provides a more physical
description of the gas scattering on a solid surface. The scattering kernel of this
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model is

R(v′ → v) =
m2vn

2παn αt (2 − αt )(kTw)2

× exp

{
−

m
[
v2

n + (1 − αn)v
′2
n

]
2kTwαn

− m[vt − (1 − αt )v
′
t ]

2

2kTwαt (2 − αt )

}
I0

(√
1 − αnm vn v′

n

αnkTw

)
, (5.2)

where

I0(x) =
1

2π

∫ 2π

0

exp(x cos φ) dφ,

vt is the two-dimensional vector of the tangential velocity, and Tw is the wall
temperature.

The kernel (5.2) contains the two parameters αt and αn. The first has the physical
meaning of the accommodation coefficient of the tangential momentum and the
second is the accommodation coefficient of the kinetic energy corresponding to the
normal molecular velocity. One can verify that if both accommodation coefficients
are equal to unity the kernel (5.2) corresponds to diffuse scattering. In the other
limit αt = 0 and αn = 0 the kernel (5.2) becomes the specular one. Moreover, it allows
backscattering at αt =2 and αn = 0, i.e. a particle changes the sign of its velocity after
a collision with the surface.

In the present work this model is used to investigate the dependence of the orifice
flow on the the gas–surface interaction. Four situations are considered: (i) αt = 0 and
αn =0, i.e. totally specular reflection; (ii) αt =0.5 and αn = 1, i.e. partially specular
and partially diffuse reflection; (iii) αt = 1 and αn = 1, i.e. totally diffuse scattering,
and (iv) αt =2 and αn = 0, i.e. back reflection. Note, the second and fourth situations
cannot be modelled using the diffuse–specular scattering model.

6. Numerical accuracy
The calculations were carried out for four values of the pressure ratio P1/P0: 0,

0.1, 0.5, and 0.9. The first value corresponds to outflow into vacuum. Some results
were presented in Sharipov (2001, 2002b). So, this case is characterized as a strong
non-equilibrium flow. The second value of P1/P0 also corresponds to a strong non-
equilibrium flow, but this case allows us to study the influence of the presence of
small quantity of the gas in the downflow container. The first and second values of
the pressure ratio correspond to choked flow in the hydrodynamic regime (δ → ∞),
since they satisfy the condition (P1/P0) < (P1/P0)∗. The third value is very close to the
critical pressure ratio, which is equal to 0.487 for a monatomic gas in accordance with
(3.3). Thus, this case represents a transition between choked and non-choked flow.
Finally, the gas flow at the fourth value of P1/P0 can be characterized as a weakly
non-equilibrium one. In this case the relative pressure drop (P0 − P1)/P0 is equal to
0.1, i.e. it is sufficiently small.

The computational accuracy is determined by the following factors: space
discretization, i.e. the cell size; the time discretization, i.e. �t; the size of the
computational region; the number of simulated particles; and the number of samples
used to calculate the macroscopic quantities.

Our aim was to maintain the computational error of the mass flow rate W within
1%. From carrying out some test calculations the following optimum parameters were
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found. The size of the largest cell was �x =�r = a/12. Note, near the orifice edge the
cell size was four times smaller, see figure 1. The time increment was �t = 0.01tm, where
tm is given by (4.1). The size of computational region was R0 = L0 = R1 = L1 = 8a, see
figure 1. The test calculations were carried out for the four values of the gas rarefaction
δ = 0.1, 1, 10, and 100 and for all values of the pressure ratio P1/P0 considered, using
the following parameters: �x = �r = a/16, �t =0.002tm, R0 = L0 = R1 =L1 = 12a. In
all these cases the variation of the flow rate W due to the variations of the grid
parameters was less than 1%, i.e. within the computational error.

The number of simulated particles fluctuates during the calculation. It was main-
tained in the interval from 5 × 106 to 15 × 106 depending on the available computer
memory. A comparison of results obtained for 5 × 106 particles with those obtained
for 15 × 106 showed that 5 × 106 provides the assumed numerical error of 1%.

Special attention should be paid to the number of samples needed to reduce the
statistical scattering. The fluctuation of the number of particles crossing the orifice
from the upflow container to the downflow is of order

√
N+. For the particles crossing

the orifice in the opposite direction the fluctuation is about
√

N−. Since the flow rate is
calculated via the difference N+ − N− the relative scattering of the flow rate will have
the order (

√
N+ +

√
N−)/(N+ − N−). Taking into account that N+ >N− the relative

scattering can be estimated as
√

N+/(N+ − N−). Thus, to guarantee the statistical
scattering of the flow rate to be less than 1% every calculation must be continued
until the condition √

N+

N+ − N− < 0.001 (6.1)

is satisfied. Since N− increases on increasing the pressure ratio from 0 to 1, then the
number of samples needed to satisfy the condition (6.1) drastically increases. Since
for the pressure ratios P1/P0 = 0 and 0.1 we have N+ � N−, of the order 104 samples
was enough. For the intermediate pressure ratio P1/P0 = 0.5 the number of samples
increased to 105. Finally, for the small pressure drop, i.e. P1/P0 = 0.9, 106 samples were
necessary to satisfy the condition (6.1), because in this case N− is very close to N+.
These numbers of samples were obtained for 107 model particles. If one tried to apply
the DSMC method for a smaller pressure drop, i.e. the pressure ratio closer to unity,
the number of samples needed to maintain a reasonable statistical scattering would be
huge, i.e. unachievable in practice. So, the value P1/P0 = 0.9 is a limit for application
of the DSMC method using modern computers. In the range 0.9 <P1/P0 < 1, i.e. for
a small pressure drop, the gas flow through an orifice must be calculated by applying
the kinetic equation as in Cercignani & Sharipov (1992), Sharipov (1996, 1997) and
Hasegawa & Sone (1991).

7. Results and discussions
7.1. Flow rate

The numerical results on the reduced flow rate W are represented in figure 2 by
the open symbols, where the rarefaction parameter δ varies from 0.1 to 250. It was
found that at the smallest value δ = 0.1 the deviation of the flow rate from its free
molecular value is less than 2%, i.e. it is very close to the numerical error. For δ > 100
no variations of the flow rate within the numerical accuracy were observed for all
pressure ratios considered here. Therefore the data presented here cover the whole
range of gas rarefaction δ.
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Figure 2. Reduced flow rate W vs. rarefaction parameter δ: �, P1/P0 = 0; �, P1/P0 = 0.1;
�, P1/P0 = 0.5; �, P1/P0 = 0.9 (open symbols, present work; filled symbols, experimental data
by Sreekanth 1965); ×, experimental data by Jitschin et al. (1995); - - - -, empirical formulae
by Fujimoto & Usami (1984) (equation (7.2)).

In the free-molecular regime (δ =0), the numerical value of W tends to its theoretical
value W =(1 − P1/P0). In many practical applications it is necessary to know the
correction to this limit value related to the intermolecular collisions. Near the free-
molecular regime the flow rate W can be written as

W =

(
1 − P1

P0

)
(1 + Aδ) . (7.1)

The constant A can be found from a comparison of the numerical results with (7.1)
as presented in figure 3. One can see that the best-fit values of the constant A are
0.13, 0.15, 0.23 and 0.31 for the pressure ratio P1/P0 = 0, 0.1, 0.5 and 0.9, respectively.

In the hydrodynamic regime (δ → ∞), the flow rate W also tends to a constant
value, which depends on the pressure ratio P1/P0. As has been mentioned above, in
this limit the flow rate W can be related to the discharge coefficient C by (3.5). The
numerical values of this coefficient are given in table 2 in § 3 and compared with
the experimental data by Perry (1949) and Fujimoto & Usami (1984) and with the
theoretical results by Alder (1979). It can be seen that the values of C obtained in
the present work are in a good agreement with those obtained by Alder (1979) in
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Figure 3. Comparison of the numerical results with (7.1) near the free-molecular regime:
�, P1/P0 = 0; �, P1/P0 = 0.1; �, P1/P0 = 0.5; �, P1/P0 = 0.9.

spite of the fact that he assumed a different value of the specific heat ratio γ . The
experimental data by Perry (1949) and Fujimoto & Usami (1984) on the coefficient
C slightly differ from the theoretical results, which can be explained by the finite
thickness of partitions in the experiments.

A significant variation of the flow rate occurs for rarefaction parameter δ from 0.5 to
50 for any pressure ratio P1/P0. The relative variation of the mass flow rate increases
on increasing the pressure ratio. In the case of outflow into vacuum (P1/P0 = 0) the
value of the flow rate W in the hydrodynamic regime (δ → ∞) is 1.5 times larger than
its value in the free molecular regime (δ = 0), while for the pressure ratio P1/P0 = 0.9
the flow rates increases 6.6 times in the transition from δ =0 to δ = 100.

Fujimoto & Usami (1984) proposed the following empirical formula based on their
experimental data for outflow into vacuum:

W = 1 +
0.4733 + 0.6005/

√
δ

1 + 4.559/δ + 3.094/δ2
, (7.2)

which is valid in the range 0 � δ � 20. This formula is presented in figure 2 by the
dashed line. The experimental values for P1/P0 = 0 for the monatomic gases helium,
argon and krypton measured by Jitschin et al. (1999) are shown in figure 2 by the
crosses. One can see that in the range 0 � δ � 10 the empirical formula by Fujimoto &
Usami (1984), the data by Jitschin et al. (1999) and the present theoretical results are
in good agreement. In the range 10 � δ � 250 the experimental data by Jitschin et al.
(1999) are systematically higher than the present theoretical results. The disagreement
is about 5%, which exceeds the experimental uncertainty (2%) and the numerical
error (1%). The experimental data on the outflow of argon into vacuum reported
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W

HS VHS

P1/P0 δ αt = 0 αt = 0.5 αt = 1 αt = 2 αt = 1
αn = 0 αn = 1 αn = 1 αn = 0 αn = 1

0 0.1 1.010 1.010 1.014 1.010 1.014
1 1.122 1.129 1.129 1.119 1.115

10 1.420 1.454 1.462 1.448 1.446
100 1.488 1.523 1.534 1.540 1.531

0.1 0.1 0.911 0.910 0.910 0.913 0.910
1 1.028 1.034 1.032 1.024 1.020

10 1.391 1.426 1.435 1.454 1.415
100 1.471 1.514 1.524 1.536 1.521

0.5 0.1 0.511 0.508 0.509 0.506 0.507
1 0.609 0.613 0.613 0.604 0.603

10 1.123 1.173 1.188 1.190 1.160
100 1.251 1.326 1.344 1.369 1.344

0.9 0.1 0.1029 0.1029 0.1025 0.1026 0.1022
1 0.1283 0.1289 0.1297 0.1275 0.1271

10 0.3873 0.3997 0.4015 0.3978 0.3701
100 0.5762 0.6578 0.6741 0.6861 0.6703

Table 3. Reduced flow rate W vs. rarefaction parameter δ, pressure ratio P1/P0, accommo-
dation coefficients αt and αn, and intermolecular potential: HS – hard spheres, VHS – variable
hard spheres.

by Barashkin et al. (1977b) are slightly lower than the present theoretical results
in the hydrodynamic regime, see table 1. However, this disagreement is within the
experimental uncertainty, i.e. 2%.

The experimental data for the two values of the pressure ratio P1/P1 = 0.1 and 0.5
reported by Sreekanth (1965) are shown in figure 2 by the filled symbols. The present
numerical results are in good agreement with the experimental data.

7.2. Influence of the gas–surface interaction

To study the dependence of the flow rate on the gas–surface interaction some
calculations were carried out for non-diffuse scattering using the Cercignani–Lampis
scattering kernel (5.2). A comparison of these results with those obtained for diffuse
reflection is presented in table 3. The third column corresponds to completely specular
reflection, the fourth column represents scattering intermediate between specular and
diffuse, the fifth column shows the data for diffuse reflection and the results for
back reflection are given in the sixth column. All these data were obtained for
the hard-sphere model of intermolecular interaction. Naturally, the totally specular
and back reflections are never realized in practice. However, considering these two
limits it is possible to establish the variation of the flow rate due to the gas–surface
interaction.

From table 3 it can be seen that near the free-molecular regime (δ = 0.1) and in
the transition (δ =1) regime the influence of the gas–surface interaction is of about
the numerical accuracy. Near the hydrodynamic regime (δ =10) its influence reaches
6% and in the hydrodynamic regime (δ = 100) its influence is about 16%. Thus, this
is the maximum variation of the flow rate due to the gas–surface interaction that can
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occur theoretically. However, in practice the variation range of the accommodation
coefficients αt and αn is not as large as found here. As shown by Sharipov (2003a , b)
the experimental value of the coefficient αt varies for different gases in the range
0.85 � αt � 1, while the coefficient αn does not influence the mass flow rate. A more
significant deviation from diffuse reflection takes place for atomically clean surfaces
(Sazhin, Borisov & Sharipov 2001). Even in this case the reflection is far from specular.
If one compares the data presented in the fourth and fifth columns of table 3, which
embrace the real values of the accommodation coefficients, one can see that the
strongest influence (about 2%) of the gas–surface interaction is observed for δ = 100
and P1/P0 = 0.9. In all other situations the influence does not exceed the numerical
accuracy.

Thus, in practice the influence of the gas–surface interaction on the flow rate through
an orifice is very weak. This features of the orifice flow rate can be successfully used
to test numerical methods in rarefied gas dynamics: practical numerical calculations
can be carried out assuming diffuse scattering even if the real gas–surface interaction
is not diffuse.

7.3. Influence of the intermolecular potential

To verify the sensitivity of the mass flow rate to the intermolecular potential some
calculations were carried out for the VHS model using the molecular cross-section
given by (4.5). The viscosity index ω was assumed to be 0.66, which corresponds to
helium. The results of these calculations are presented in the seventh column of table 3,
from which it can be seen that for P1/P0 = 0 and 0.1, the influence of the molecular
model is about the numerical error, i.e. 1%. For the pressure ratio P1/P0 = 0.5 the
influence slightly exceeds the numerical error at δ =10. However, for the small pressure
drop, i.e. P1/P0 = 0.9 the flow rate becomes sensitive to the molecular model. Near
the hydrodynamic regime δ = 10 the variation of the flow rate W due to the molecular
model reaches 8%.

At all the pressure ratios considered here the limit value of the flow rate W at
δ → ∞ is not sensitive the molecular model.

7.4. Flow field

The streamlines for the four values of the rarefaction parameter δ are given in
Figures 4, 5, 6, and 7 at P1/P0 = 0, 0.1, 0.5, and 0.9, respectively.

In the case of outflow into vacuum (P1/P0 = 0) the streamlines are as expected.
Near the free-molecular regime (δ =0.1) they are symmetric. In the transition from
the free-molecular regime to the hydrodynamic regime the symmetry is broken, but
no qualitative change occurs.

For P1/P0 = 0.1 the behaviour of the streamlines is similar to that for P1/P0 = 0
near the free-molecular (δ = 0.1) and in the transition (δ = 1) regimes, while at
δ = 10 and 100 the behaviour is quite different. At δ =10 the gas begins to form
vortices in the downflow container. In the hydrodynamic regime (δ =100) a jet
of gas is observed in the downflow container. It can be seen that in the region
2 � x/a � 4 and 0 � r/a � 0.5 the streamlines are not straight but deviate from the
x-axis.

For the pressure ratio P1/P0 = 0.5 the streamlines are not symmetric near the free-
molecular regime δ = 0.1, while they are symmetric in the transition regime (δ = 1).
Like the previous case, i.e. P1/P0 = 0.1, at δ = 10 there are vortices at δ = 10 and a jet
is formed in the downflow container at δ = 100. However, in this case the streamlines
are straight.
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Figure 4. Streamlines at P1/P0 = 0.

For the small pressure drop, i.e. P1/P0 = 0.9, the behaviour of the streamlines is
similar to that for P1/P0 = 0.5 at δ = 1, 10 and 100, while near the free-molecular
regime (δ = 0.1) the streamlines are quite different. This is an unexpected result.
To eliminate doubt that this is a numerical phenomenon several calculations were
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Figure 5. Streamlines at P1/P0 = 0.1.

carried out with different grid parameters, but the picture given in figure 7 for δ = 0.1
is very stable. To confirm that this is really a physical phenomenon the corresponding
calculations based on the kinetic equation should be carried out.
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Figure 6. Streamlines at P1/P0 = 0.5.

The distributions of the density, temperature and longitudinal component of the
bulk velocity along the symmetry axis are presented in figures 8, 9, 10, and 11 for the
pressure ratios P1/P0 = 0, 0.1, 0.5, and 0.9, respectively.



Numerical simulation of rarefied gas flow through a thin orifice 51

–8 –6 –4 –2 0 2 4 6 8
0

2

4

6

8

–8 –6 –4 –2 0 2 4 6 8
0

2

4

6

8

–8 –6 –4 –2 0 2 4 6 8
0

2

4

6

8

–8 –6 –4 –2 0 2 4 6 8
0

2

4

6

8

δ = 0.1

δ = 1

δ = 10

δ = 100

Figure 7. Streamlines at P1/P0 = 0.9.

In the case of outflow into vacuum (P1/P0 = 0) monotonic variations of the density
and temperature from their equilibrium values n0 and T0 to zero are observed. The
bulk velocity monotonically increases beginning from zero.
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Figure 8. Distributions of density, temperature and bulk velocity along the orifice axis
at P1/P0 = 0.

For the pressure ratio P1/P0 = 0.1 the density distribution monotonically decreases
from n0 to 0.1n0 for δ = 0.1, 1 and 10. The temperature of the gas has a minimum
near the point x/a = 1 and then it tends to its equilibrium value T0 at δ = 0.1, 1, and
10. In the hydrodynamic regime (δ = 100) a non-monotonic behaviour of the density
is observed. A similar behaviour of the density distribution along the orifice axis was
noted in the experiments by Maté, Tejeda & Montero (1998), Ramos et al. (2000)
and Maté et al. (2001). The corresponding temperature has a very low value, i.e. 0.2T0

at the point x/a = 3 and then it non-monotonically increases up to the equilibrium
value T0. It is curious that the bulk velocity distribution behaves oppositely to the
temperature. It has a maximum at the point x/a =1 at δ = 0.1, 1 and 10, then it
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Figure 9. Distributions of density, temperature and bulk velocity along the orifice axis
at P1/P0 = 0.1.

decays monotonically to zero. At δ = 100 the velocity reaches its maximum values in
the points where the temperature has its minimum values.

Qualitatively, the behaviours of the density, temperature and velocity for the
pressure ratio P1/P0 = 0.5 are similar to those for P1/P0 = 0.1 at δ = 0.1, 1 and
10 with the difference that the density varies from n0 to 0.5n0 and the variations of
the temperature and velocity are smaller. In the hydrodynamic regime (δ = 100) the
spatial derivatives of all quantities have a sharp variation i.e. ∂/∂x, at x/a = 1. A
calculation showed that at this point the local Mach number reaches its maximum
value, which is very close to unity.

For the small pressure drop, i.e. P1/P0 = 0.9, just quantitative differences of the
axial distributions from those for P1/P0 = 0.5 are observed. The density varies from
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Figure 10. Distributions of density, temperature and bulk velocity along the orifice axis
at P1/P0 = 0.5.

n0 to 0.9n0, the temperature variation is about 3% at δ = 100 and about 1% at δ = 10.
For δ = 0.1 and 1 the temperature variation is of the order of the statistical scattering.
The bulk velocity is significantly smaller than the local sound velocity.

Since in the hydrodynamic regime (δ = 100) at the pressure ratios P1/P1 = 0.1, 0.5
and 0.9 the macroscopic quantities do not decay smoothly to their equilibrium values
additional calculations were carried out with a larger computational domain, i.e.
the length of the downflow container was increased up to L1 = 16, see figure 1. A
comparison of these results with those obtained for L1 = 8 is shown in figures 12,
13 and 14 for P1/P0 = 0.1, 0.5 and 0.9 respectively, where the solid lines represents
the result for L1 = 16 and the circles correspond to those for L1 = 8. It can be seen
that the results obtained for L1 = 8 are affected by the boundary just in the small
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Figure 11. Distributions of density, temperature and bulk velocity along the orifice axis
at P1/P0 = 0.9.

region 7 � x/a � 8 for P1/P0 = 0.1 and in the region 6 � x/a � 8 for P1/P0 = 0.5 and
P1/P0 = 0.9, where the flow stagnation occurs. Moreover, figure 12 shows that the
density, temperature and bulk velocity have several points of maximum and minimum
before the decay to the equilibrium values.

8. Concluding remarks
The mass flow rate through a thin orifice for four values of the pressure ratio and

for the whole range of gas rarefaction was calculated by the direct simulation Monte
Carlo method. The values of the pressure ratio embrace the case of outflow into
vacuum, i.e. choked flow, and the case of a small pressure drop, i.e. non-choked flow.
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It was shown that at any pressure ratio the flow rate tends to a constant value in
the hydrodynamic regime, which is established at rarefaction parameter δ equal to 50.
The most significant variation of the flow rate occurs in the range of the rarefaction
parameter from 0.5 to 50.

Good agreement was observed between the present numerical results and
experimental data available in the open literature. It should be noted, however,
that there is a lack of reliable experimental data on orifice flow for wide ranges of
the gas rarefaction and intermediate values of the pressure ratio.

To reach a reasonable numerical accuracy related to the statistical scattering, the
number of samples must drastically increase on decreasing the pressure drop, i.e.
when the pressure ratio P1/P0 approaches unity. In the range 0.9 � P1/P0 � 1 the
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Figure 13. As figure 12 but at P1/P0 = 0.5.

computer time increases so significantly that the DSMC method becomes inefficient
and the problem must be solved on the basis of numerical calculation of the kinetic
equation.

Near the hydrodynamic regime vortices appear in the downflow container if the
pressure ratio differs from zero. In the hydrodynamic regime the gas flow begins
to form a strong jet just beyond the orifice. Along this jet the variation of the
macroscopic qualities is not monotonic at P1/P0 = 0.1.

In the future, the numerical code used to calculate the present results will be
generalized to simulate the gas flow through short tubes. This will allow us to evaluate
the influence of the partition thickness on the flow rate over the whole range of gas
rarefaction.
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